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Abstract

Southern Ocean organic carbon export plays an important role in the global carbon
cycle, yet its basin-scale climatology and variability are uncertain due to limited cov-
erage of in situ observations. In this study, a neural network approach based on the
self-organizing map (SOM) is adopted to construct weekly gridded (1◦ ×1◦) maps of5

organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained
with in situ measurements of O2/Ar-derived net community production (NCP) that are
tightly linked to the carbon export in the mixed layer on timescales of 1–2 weeks, and
six potential NCP predictors: photosynthetically available radiation (PAR), particulate
organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface10

height (SSH), and mixed layer depth (MLD). This non-parametric approach is based
entirely on the observed statistical relationships between NCP and the predictors, and
therefore is strongly constrained by observations.

A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and
MLD. Our constructed NCP is further validated by good agreement with previously15

published independent in situ derived NCP of weekly or longer temporal resolution
through real-time and climatological comparisons at various sampling sites. The re-
sulting November–March NCP climatology reveals a pronounced zonal band of high
NCP roughly following the subtropical front in the Atlantic, Indian and western Pacific
sectors, and turns southeastward shortly after the dateline. Other regions of elevated20

NCP include the upwelling zones off Chile and Namibia, Patagonian Shelf, Antarctic
coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet.
This basin-scale NCP climatology closely resembles that of the satellite POC field and
observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50◦ S
from our dataset, 14 mmolCm−2 d−1, falls within the range of 8.3–24 mmolCm−2 d−1

25

from other model estimates. A broad agreement is found in the basin-wide NCP cli-
matology among various models but with significant spatial variations, particularly in
the Patagonian Shelf. Our approach provides a comprehensive view of the Southern
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Ocean NCP climatology and a potential opportunity to further investigate interannual
and intraseasonal variability.

1 Introduction

The Southern Ocean plays an important role in the global carbon cycle. The current
annual global ocean uptake of atmospheric carbon dioxide (CO2) is about 2 petagrams5

(Pg) of carbon, half of which is taken up by the vast Southern Ocean south of 30◦ S
(Takahashi et al., 2012). Atmospheric CO2 absorbed by the ocean can be transferred
from the surface to the deep ocean via various physical, chemical and biological mech-
anisms associated with the solubility and biological pumps (Volk and Hoffert, 1985;
Carlson et al., 2010).10

Biological carbon export from the ocean surface is a function of various processes,
including net community production (NCP), which reflects the metabolic balance be-
tween gross primary production (GPP) and community respiration (Codispoti et al.,
1986; Minas et al., 1986). It describes the net rate at which CO2 is transformed to
particulate and dissolved organic carbon (POC and DOC). For the present study, we15

use NCP estimates derived from in situ measurements of the elemental ratio of O2/Ar.
The O2/Ar method measures biological O2 supersaturation in the mixed layer (Craig
and Hayward, 1987), and yields NCP estimates over the O2 residence timescale (1–2
weeks) (Reuer et al., 2007; Cassar et al., 2007, 2009, 2011). On this timescale, the
NCP derived from this method is tightly linked to the export of organic carbon from20

the mixed layer at steady state, under the assumptions that both vertical mixing of O2-
depleted waters from below and accumulation of POC and DOC in the mixed layer are
negligible (Cassar et al., 2009, 2011; Jonsson et al., 2013). Although we use NCP and
carbon export production interchangeably in this study, it should be noted that under
some circumstances, the assumption of steady-state is violated (Hamme et al., 2012;25

Jonsson et al., 2013).
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While in situ O2/Ar measurements shed new light on the NCP distribution and vari-
ability, the Southern Ocean remains seriously undersampled. The difficulty in obtaining
a large-scale picture of the carbon export owes to the unavailability of direct satellite
measurements. In addition, NCP is highly variable in space and time and cannot be de-
rived from linear interpolation between in situ measurements. Field experiments also5

reveal that the plankton ecosystem and CO2 flux variability are not dominated by just
one single mechanism but by a confluence of several processes that shift in relative
importance over time and space (Banse, 1996; Abbott et al., 2000, 2001; Cassar et al.,
2011; Tortell et al., 2012), which are difficult to capture in biogeochemical models.

An alternative strategy is to use a data-driven modeling approach. We may achieve10

a more comprehensive characterization of temporal and spatial variability of NCP by
examining the statistical relationships between NCP and physical as well as biogeo-
chemical properties that potentially have impacts on carbon export. In addition to mixed
layer depth (MLD) and light (i.e., photosynthetically available radiation, PAR) (Cassar
et al., 2011), POC, Chl, sea surface temperature (SST), and sea surface height (SSH)15

are likely important factors regulating or correlated with NCP in the Southern Ocean.
POC production is the dominant form of NCP in the Southern Ocean (Ogawa et al.,
1999; Wiebinga and de Baar, 1998; Kaehler et al., 1997; Hansell and Carlson, 1998;
Sweeney et al., 2000; Schlitzer, 2002; Ishii et al., 2002; Allison et al., 2010), and Chl
concentration is commonly used to estimate net primary production (NPP) from satel-20

lites (Behrenfeld and Falkowsky, 1997; Moore and Abbott, 2000; Campbell et al., 2002;
Carr et al., 2006; Bissinger et al., 2008; Friedrichs et al., 2009; Saba et al., 2011; Fried-
land et al., 2012; Nevison et al., 2012; Olonscheck et al., 2013). SST has been used to
derive export and export efficiency based on the relationship with NPP and through its
influence on heterotrophic activity (Laws et al., 2000; Laws 2004; Laws et al., 2011).25

SSH yields information on oceanic eddies, fronts, and nutrient transport that are crucial
to spatial variation of biological activity (Abbott et al., 2000, 2001; Glorioso et al., 2005;
Kahru et al., 2007; Gruber et al., 2011).
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Advances in remote sensing and statistical algorithms now permit satellite data-
driven modeling of NCP. Satellite-borne sensors have accumulated records for
a decade or longer of PAR, POC, Chl, SST, and SSH of sufficient resolution and cov-
erage in space and time. Southern Ocean MLD products became available in recent
years from Argo float profiles (Wong 2005; Sallée et al., 2006; Schneider and Bravo,5

2006; Dong et al., 2008) as well as from high resolution ocean general circulation
models (OGCMs) (Aoki et al., 2007a; Sterl et al., 2012). In this study, we combine
the in situ NCP measurements from 60 crossings spanning more than a decade with
gridded datasets of NCP predictors, PAR, POC, Chl, SST, SSH, and MLD, to gen-
erate weekly, gridded maps of NCP estimates over the Southern Ocean from 199810

through 2009. We generate these NCP predictions through the use of self-organizing
map (SOM) analysis, a type of clustering approach that has arisen in the field of arti-
ficial neural networks (Kohonen, 2001). SOM analysis has gained in popularity in the
atmospheric and ocean sciences over the past decade, with applications in categoriz-
ing atmospheric teleconnection patterns (Reusch et al., 2005; Johnson et al., 2008;15

Johnson and Feldstein, 2010; Johnson, 2013), and in generating maps of pCO2 for the
North Atlantic (Friedrich and Oschlies, 2009; Telszewski et al., 2009) and for the global
ocean (Sasse et al., 2013).

In the present application, we follow the general approach of Friedrich and Oschlies
(2009) and Telszewski et al. (2009), whereby we use the SOM with the combined pur-20

pose of cluster analysis and nonlinear, nonparametric regression between a set of pre-
dictors and NCP. Under this approach, which we describe more thoroughly in Sect. 3,
we allow the data to determine the potentially complex relationships between the pre-
dictors and NCP. Thus, the predictor/NCP relationships are unconstrained by any pre-
conceived, uncertain functional forms and are determined entirely from the observed25

data, which contrasts previous studies of Southern Ocean NCP. Nevertheless, we find
that our estimates of NCP agree broadly with previous estimates while also providing
additional information on temporal and spatial variability. The remainder of the paper is
organized as follows. In Sect. 2 we describe the data used in the study. Section 3 pro-
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vides a description of the SOM methodology for generating weekly NCP maps and for
calculating error estimates. In Sect. 4 we present our results, noting some of the most
salient features from the constructed NCP dataset. Section 5 provides a discussion
and conclusions.

2 Data5

We make extensive use of gridded data products and cruise measurements in the
Southern Ocean domain poleward of 20◦ S and for the period between 1998 and 2009.
The gridded and research cruise data are described below.

2.1 Gridded predictor data

We consider six gridded data products, PAR, POC, Chl, SST SSH, and MLD, as po-10

tential predictors of NCP for use in the SOM analysis and for the generation of weekly
NCP maps, as described more thoroughly in Sect. 3.

We utilize satellite PAR and POC from the Moderate Resolution Imaging Spectro-
radiometer flown on the Aqua satellite (MODIS-Aqua) 8 day mean 9 km for the period
10 July 2002–30 December 2009. The weekly averaged Chl are constructed from the15

daily 9 km maps of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), version 5.2 for
the period 7 January 1998–26 December 2007 (O’Reilly et al., 1998). For SST, we use
NOAA Optimum Interpolation 0.25◦ Daily SST Blended with Advanced Very High Reso-
lution Radiometer (AVHRR) and AMSR version 2 data (OI SST) (Reynolds et al., 2007)
for the period 7 January 1998–19 August 2009. The weekly SSH anomaly maps are20

obtained from the Archiving, Validation and Interpretation of Satellite Oceanographic
Data (AVISO) on about a 1/3◦ ×1/3◦ grid (Ducet et al., 2000) from 7 January 1998
to 22 July 2009. To determine the absolute SSH, we added the AVISO SSH anomaly
to the sea level climatology of Niiler and Maximenko (Niiler et al., 2003; Maximenko
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et al., 2009). We choose this particular SSH climatology because it has high spatial
resolution (Sokolov and Rintoul, 2007).

Because the coverage of Argo float profiles is not homogenous (Akoi et al., 2007a),
and the available gridded Argo data are either of coarser resolutions or shorter time pe-
riods (http://www.argo.ucsd.edu/Gridded_fields.html), we choose the MLD of the high5

resolution OGCM for the Earth Simulator (OFES) (Masumoto et al., 2004; Sasaki et al.,
2006, 2008). The OFES is an eddy-resolving quasi-global (75◦ N–75◦ S) ocean model
based on the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version
3 (GFDL MOM3) with 0.1◦ horizontal resolution and 54 vertical levels. The model cap-
tures realistic upper ocean dynamics, including eddies and heat balance (Sasaki and10

Nonaka, 2006; Taguchi et al., 2007; Scott et al., 2008; Zhuang et al., 2010; Yoshida
et al., 2010; Sasaki et al., 2011; Chang et al., 2012), and has been used to inves-
tigate the Southern Ocean dynamical variability (Aoki et al., 2007a, b, 2010; Sasaki
and Schneider, 2008; Thompson et al., 2010; Thompson and Richards, 2011). In the
present study, we use the MLD from the OFES simulation forced by the QuikSCAT15

satellite wind field from 28 July 1999 to 28 October 2009.
For the interpolation of the predictor data to the daily ship track locations, all gridded

data are first interpolated to daily resolution. For the generation of weekly NCP maps,
all gridded predictor data are interpolated to a common 1◦ ×1◦ latitude–longitude grid
poleward of 20◦ S at weekly temporal resolution.20

2.2 Research cruise data

In the SOM analysis described below, the predictand of interest is an estimate of NCP
from an extensive set of published data obtained from 41 research cruises in the South-
ern Ocean between 1998 and 2009 (Reuer et al., 2007; Cassar et al., 2007, 2011). Fig-
ure 1a shows our ship tracks with time of the cruises color-coded in months. We see25

that the ship tracks mainly cover regions of high chlorophyll (see Fig. 2c) during the
growing season between November and March. The histogram of the ship track NCP
distribution is shown in Fig. 1b. From visual inspection, we also exclude spuriously large
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NCP outliers exceeding 250 mmolO2 m−2 d−1. For all available ship track data, which
are sampled unevenly in time, we calculate the daily mean NCP, latitude, and longitude.
We then linearly interpolate all available daily gridded predictor data to the ship track
locations. Negative NCP values are possibly due to net heterotrophy or measurements
contaminated by the upwelling of oxygen-undersaturated water. Because we are un-5

able to estimate this potential bias, we exclude all days with negative NCP values prior
to the SOM analysis. Overall, we retain 401 days of ship track data for the SOM anal-
ysis. All NCP and predictor data are standardized for the SOM analysis. Owing to the
skewness of the NCP, Chl, MLD and POC data, we perform a log10 transformation to
these variables prior to the standardization. As a result, the SOM analysis is applied to10

all predictor and predictand data that have approximately Gaussian distributions with
a mean of zero and a standard deviation of one.

In this study, the growing season is defined as November through March. Unless
otherwise noted, all units are converted to mmolCm−2 d−1 for carbon export by division
with a molar photosynthetic quotient for NCP of 1.4 O2/CO2 (Laws, 1991).15

3 Methodology

We construct weekly 1◦ ×1◦ NCP maps between 1998 and 2009 over the Southern
Ocean by calculating NCP from weekly maps of up to six of the gridded predictor
variables described in the previous section. For these calculations, we assume that
NCP has a potentially complex, nonlinear relationship with these six predictors:20

NCP = f (PAR, POC, Chl, SST, SSH, MLD) (1)

We understand that some of the predictors are not independent, and the information
provided by these predictors might be redundant. However, in consideration of vari-
able predictor data availability, as discussed below, such information overlap would
be useful in compensation of missing predictors. In order to approximate this func-25

tional relationship, we use an artificial neural network approach, self-organizing maps
16931
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(SOMs), similar to that used by Friedrich and Oschlies (2009) and Telszewski et al.
(2009) for generating maps of the North Atlantic pCO2. The method of self-organizing
maps combines elements of cluster analysis with nonlinear, nonparametric regression
(Kohonen, 2001). This particular approach is advantageous for the present purpose
because the methodology does not assume a pre-defined functional form between5

predictor and predictand; rather, the methodology relies on an unsupervised learning
procedure whereby the potentially complex predictor/predictand relationships are de-
termined entirely by the data used to construct the SOM through a process called
training. In addition, the methodology readily handles one or more missing predictors
when generating NCP maps, which is a useful property given the limited coverage10

of satellite predictor data over the Southern Ocean for some periods. The approach
used here differs from previous SOM studies (Friedrich and Oschlies, 2009; Telszewski
et al., 2009) in that we perform a thorough validation analysis to determine an optimal
combination of SOM parameters and predictors and to provide estimates of error for
weekly NCP predictions. Below we include a brief description of the SOM methodol-15

ogy and descriptions of the procedures for generating NCP maps and calculating error
estimates. Additional discussion is found in the Supplementary Methods section of the
supporting material, and a more thorough description of the SOM methodology can be
found in the appendix of Johnson et al. (2008).

3.1 Self-organizing map methodology and NCP dataset construction20

In the present application, the SOM is trained with the seven-dimensional (six pre-
dictors and the predictand, NCP) daily ship track data, where each daily observation
is treated as a seven-dimensional data vector. The NCP mapping is accomplished in
two steps: (1) SOM training with ship track data to determine the predictor/NCP clus-
ters, and (2) assignment of weekly gridded predictor data to the best-matching SOM25

clusters and the concomitant assignment of the associated cluster NCP values to the
corresponding grid. The first step generates K clusters, where the user specifies the
number K , that describe prototypical combinations of predictor and NCP values (the
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method for determining K is described below in Sect. 3.2). In the second stage, for
each grid and week the available predictor data are combined into a data vector of
up to six dimensions; then this data vector is mapped to the best-matching SOM clus-
ter on the basis of minimum Euclidean distance. The NCP value associated with that
best-matching cluster, which is determined in step 1, is then assigned to that particular5

grid and week. This process is repeated for each available grid and week to construct
weekly NCP maps.

As mentioned above, the SOM approach has the advantage of readily handling data
even when one or more predictors are missing during both the training and NCP map-
ping stages. Due to limitations of satellite data coverage and differences in the starting10

and ending dates of the predictor datasets, most ship track days and weekly grids have
at least one missing predictor value. In particular, the large cloud cover over the South-
ern Ocean, which typically exceeds 70 % south of 40◦ S during the growing season
(Warren et al., 1988), significantly impairs satellite retrieval of POC and Chl. Table 1
shows the availability of each variable in both the ship track data used to train the SOM15

and the gridded weekly data used to construct the NCP maps. Some variables such
as SST, MLD, and SSH have good spatial and temporal coverage, whereas others are
more sparse. Even though POC and Chl are among those of the lower data availability,
an improvement is apparent from their relatively high coverage of 40–60 %, in con-
trast to the large cloud cover (> 70 % on average), which is a result of interpolation20

of the predictor data (7 or 8 day 1◦ ×1◦) onto daily ship track locations as well as the
weekly grids. Overall, only approximately 30 % of all ship track days have all six pre-
dictor values available. For cases when one or more predictor values are missing, the
SOM algorithm finds the best-matching clusters on the basis of minimum Euclidean
distance, just as in the usual case, except that all dimensions corresponding to miss-25

ing data are ignored. In the process of assigning NCP values to the weekly gridded
data, the cluster dimension corresponding to NCP is ignored in every case of cluster
assignment because NCP is excluded from the predictor data. The NCP value of the
best-matching cluster is then assigned to the corresponding grid. Thus, this particular
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application of SOM analysis essentially represents a method of imputation for missing
data.

3.2 SOM parameter determination and error estimation

Each SOM analysis requires a number of specifications to be chosen prior to the anal-
ysis such as the type of neighborhood function, type of lattice (usually hexagonal or5

rectangular), number of rows and columns in the lattice (with the total number of neu-
rons equal to the number of rows multiplied by the number of columns), and the final
neighborhood radius, which describes how connected the neurons are to their neigh-
bors in the lattice at the end of training. The readers are referred to Liu et al. (2006)
for a description of the neighborhood function and lattice. In practice, the performance10

of the SOM analysis tends to be most sensitive to the chosen number of neurons and
to the final neighborhood radius. If the number of neurons (i.e., clusters) is too large
and/or the final neighborhood radius is too small, then the clusters may be fit too closely
to the training data, and the statistical model may be overfit for NCP prediction. In con-
trast, if the number of neurons is too small and/or the final neighborhood radius is too15

large, then the statistical model may not capture the range of NCP variability accurately.
In order to determine an appropriate number of neurons, final neighborhood radius,

and predictor combination, we consider several factors, including predictor availability,
prior knowledge of Southern Ocean NCP, and a set of cross-validation tests. For the
cross-validation tests, we specify K and the final neighborhood radius, partition the20

NCP and predictor data into training and validation sets, train the SOM with the training
set, and then evaluate NCP predictions with respect to the withheld validation data. We
evaluate a large number of SOM parameter combinations by calculating the mean ab-
solute error (MAE), root-mean-square error (RMSE), and mean fractional error (MFE)
of the predicted NCP. A more thorough description of the cross-validation tests is found25

in the Supplementary Methods of the Supplement.
Several predictor/parameter combinations emerge as candidates for the NCP con-

struction from the cross-validation tests with their errors on the lower end of the es-
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timates (in mmolCm−2 d−1): MAE ∼ 4–7, RMSE ∼ 11–13, MFE ∼ 26–42 %. However,
because these error estimates only apply to the ship track NCP of limited spatial cov-
erage over the Southern Ocean, we also consider additional criteria based on prior
expectations of NCP variability. We examine the temporal evolution of the monthly,
area-integrated NCP south of 50◦ S as well as the spatial distribution of NCP climatol-5

ogy for the growing season. Although the true temporal evolution of the area-integrated
NCP south of 50◦ S is uncertain, a decline in NCP is expected as the season comes
to an end. Therefore, we exclude the candidates that show an increase of NCP from
February to March. The rest of the candidate NCP constructions show similar clima-
tological features, except for a few that produce unexpectedly high mean NCP in re-10

gions of relative minima in both POC and Chl. Because these regions are outside
the ship track coverage, we believe the unexpected high NCP estimates to be the
result of overfitting to the ship tracks, which target high NCP regions. Consequently,
we exclude these candidate NCP constructions. Ultimately, we choose the NCP con-
struction based on a SOM with 12 rows, 8 columns, a final neighborhood radius of 1,15

and three predictors (Chl, PAR, MLD) because this combination exemplifies low mean
errors with the weekly MAE = 6.76mmolCm−2 d−1, RMSE = 11.4mmolCm−2 d−1 and
MFE = 31 %, and a reasonable climatological NCP that is broadly consistent with pre-
vious studies, as described more thoroughly in Sect. 4.

We emphasize that this choice of predictor set does not mean that the other predic-20

tors are unimportant for NCP variability; rather, the combination of redundancy of pre-
dictor information (e.g., positive correlations among POC, Chl and SSH) and variations
in data availability suggest that these other predictors do not add sufficient indepen-
dent information to improve NCP predictions on weekly timescales. Interestingly, as we
discuss further below, the NCP climatology has a stronger relationship with the POC25

than Chl climatology even though POC is not included in the final SOM analysis. This
strong correspondence between mean NCP and POC despite the omission of POC as
a final predictor should only strengthen the conclusion that POC plays a pivotal role in
the spatial variability of NCP in the Southern Ocean.
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3.3 Bootstrap NCP dataset constructions

In addition to measurement error and random NCP variability unaccounted by the pre-
dictors, which are captured in the error estimates in Sect. 3.2, another important source
of error for the long-term mean is the limited data coverage used to construct the SOM.
Because we are constructing a gridded NCP dataset over a large domain based on5

a limited number of research cruise measurements, a small number of measurements
may have a disproportionate influence on the regional NCP constructions. To provide
a quantitative measure of how this limitation impacts the uncertainty in the NCP cli-
matology constructions, we use a bootstrap approach to construct 100 additional NCP
datasets. From these 100 datasets, the NCP climatology variance for a particular lo-10

cation provides an indication of the sensitivity of the NCP estimates to this particular,
limited ship track dataset used to train the SOM.

For each of these 100 bootstrap NCP datasets, we perform the NCP construction
in the same way as described above but with one distinction: the SOM is trained with
resampled ship track data. The resampling procedure, which follows conventional boot-15

strap procedures, is performed as follows. A bootstrap ship track dataset is constructed
by randomly selecting research cruise numbers from 1 through 41 with replacement,
and then placing the ship track data from the randomly chosen cruise number into the
bootstrap dataset. This process of randomly choosing cruise numbers and placing the
corresponding data into the bootstrap ship track dataset is repeated until the bootstrap20

ship track dataset has the same number of daily NCP and predictor observations as
in the original ship track dataset. The SOM is then trained on the bootstrap ship track
data with the same parameter and predictor combination as discussed above, and then
the bootstrap NCP dataset is constructed based on this modified SOM.
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4 Results

In this section, the basin-scale features in the constructed NCP dataset are first de-
scribed. In the absence of the basin-scale NCP observation, we compare the spatial
pattern of the constructed NCP with the satellite-measured POC and Chl, because
the former accounts for 80–90 % of NCP in the Southern Ocean (Hansell and Carson5

1998; Allison et al., 2010), and the latter is often used to derive phytoplankton biomass
and NPP. Secondly, we examine the regional values of constructed NCP by compari-
son with those reported in the literature. We also include the 95 % bootstrap confidence
intervals and seasonal standard deviation to indicate the uncertainty and temporal vari-
ability, respectively. For comparison with the in situ data that are not on our data grids,10

a 1–2◦ spatial average is taken of the constructed NCP surrounding the point of obser-
vation. We note that exact agreement is not expected, given that the in situ derived NCP
used for comparison were obtained by various methods that access different temporal
and spatial scales of carbon export and that sometimes include different processes.
Because our data are resolved on weekly timescales, we only perform comparisons15

with measurements of weekly or longer temporal resolution.
Thirdly, we show a dominant basin-scale NCP distribution emerged from various

models, with discussion of the discrepancies. In addition, because the biological pump
is the main mechanism that drives atmospheric CO2 into the ocean (e.g., Volk and
Hoffert, 1985; Carlson et al., 2010) we compare our NCP to the observed air–sea CO220

flux of the Southern Ocean. To convert from annual means to daily range, we assume
that the growing season varies from 90 to 120 days (Heywood and Whitaker, 1984;
Sweeny et al., 2000; Reuer et al., 2007; Racault et al., 2012) because of the large
spatial and temporal variability in its duration for the Southern Ocean (Lizotte, et al.,
2001; Racault et al., 2012; Borrione and Schlitzer 2013). The total area south of 50◦ S25

is approximated to be 45.7×106 km2 (Moore and Abbot, 2000).
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4.1 Southern Ocean NCP climatology

Figure 2a shows the spatial distribution of 12 yr growing season NCP climatology
(1998–2009), superimposed with the major Southern Ocean fronts (Orsi et al., 1995).
An elongated zonal band of high NCP (≥ 20 mmolCm−2 d−1) is seen approximately fol-
lowing the Subtropical Front (STF ∼ 40◦ S), where macronutrient-rich subantarctic wa-5

ter converges with the macronutrient-poor subtropical water (Takahashi et al., 2012).
It stretches from the southwest Atlantic, across the south Indian Ocean to the western
South Pacific, then splits with the STF east of the dateline around 170◦ W, and turns
southeastward to about 120◦ W. A sharp NCP gradient exists north of the front, with
very low NCP throughout most of the subtropics except near large landmasses. Ele-10

vated NCP is seen along the Southern Boundary (SBdy), the southernmost limit of the
Antarctica Circumpolar Circulation (ACC), and along the Antarctic coast, including the
Ross Sea and Amundsen Sea, where strong CO2 sinks have recently been observed
(Arrigo et al., 2008; Tortell et al., 2012). Between the STF and SBdy, we also see high
NCP (≥ 20 mmolCm−2 d−1) in the complex region off the southeastern South America15

between the Río de la Plata and the Falkland Island, including the Patagonian Shelf
and Brazil-Malvinas Confluence (BMC) zone, and in the vicinity of the Crozet Islands
(48–60◦ E, 42–49◦ S), Kerguelen Island (67–95◦ E, 45–55◦ S), and South Georgia (34–
42◦ W, 50–55◦ S).

As discussed in the previous section, one of the limitations of this study is the limited20

availability and spatial coverage of NCP observations used in the SOM analysis for
generalizing the relationships between NCP and each of the predictors. As a quantita-
tive indication of how this limitation may impact the constructed NCP climatology, Fig. 3
shows the standard deviation, σboot, of the growing season mean NCP from the one
hundred bootstrap NCP datasets (Sect. 3.3), superimposed with the locations of each25

ship track. Largest uncertainties (σboot ∼ 6 mmolCm−2 d−1) are found over the subtrop-
ical oceans, where ship track coverage does not exist. These locations are generally
low productivity regions with ocean surface characteristics not generally targeted by the
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field campaigns. In regions of dense ship track coverage, the uncertainty is generally
lower (σboot ≤ 4 mmolCm−2 d−1). The regions of high NCP bootstrap climatology stan-
dard deviation provide an indication of where targeted measurements in future studies
may help to reduce the uncertainty of Southern Ocean NCP estimates.

The climatologies of POC (2002–2009) and Chl (1998–2007) are shown in Fig. 2b5

and c for comparison. Chl is in log scale due to its strong positive skewness. Overall,
the regions of high mean NCP (Fig. 2a) correspond well with regions of high mean
POC and Chl. The area-weighted, centered pattern correlation coefficients are 0.66
and 0.33 for climatological NCP vs. POC and vs. log10(Chl), respectively. On the basis
of these pattern correlations, the climatological POC and Chl fields are able to explain,10

in a linear sense, 44 % and 11 % of the climatological NCP field, respectively. However,
the temporal correlation between NCP and POC and log10 Chl in the daily ship track
data are only 0.20 and 0.23, respectively, which suggests that POC and Chl alone only
explain a small percentage of the NCP variability on daily and shorter timescales. The
low correlation between NCP and Chl on shorter timescales is consistent with Reuer15

et al. (2007). Despite this weak linear relationship in the ship track data, we seem to be
able to tease out a clear link in the Southern Ocean climatology.

4.2 Regional NCP evaluation

In the following, we compare the regional NCP between the constructed data and in-
dependent in situ estimates available in the literature. For the NCP values reported for20

the period prior to our data availability, we provide the climatological values from our
data at the sites and calendar days of the measurements. For those reported for the
period overlapping our data period (1998–2009), we carry out a real-time comparison.

First we compare our NCP climatology with that off the southeast coast of
the South Island of New Zealand, derived from the Munida time series (171.5◦ E25

45.85◦ S) using a 13C-based diagnostic box model (Brix et al., 2013). Their reported
NCP climatology, 14.6–22.3 mmolCm−2 d−1, is in strong agreement with our con-
structed climatology of 20.8 mmolCm−2 d−1, with a 95 % bootstrap confidence in-
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terval of 16.2–27.0 mmolCm−2 d−1, for the identical time period of mid October–
March 1998–2009. Table 2 shows the area-integrated NCP south of 50◦ S from var-
ious models and their corresponding periods. The 12 yr climatology (1998–2009) of
our constructed NCP is 14 mmolCm−2 d−1 with the 95 % bootstrap confidence inter-
val of 12–21 mmolCm−2 d−1, whereas the values of other studies range from 8.3 to5

24 mmolCm−2 d−1, most of which are encompassed by the 95 % bootstrap confidence
interval.

In the Indian and Pacific sectors of the Southern Ocean, spanning from 1976 through
1997, most of the in situ derived NCP are reasonably close to our values, given the
uncertainty of the climatology as given by the bootstrap interval and the temporal vari-10

ability as given by the seasonal standard deviation (Table 3a). One exception is the
high-end values over the southern and southwestern Ross Sea, derived using a sea-
sonal DIC budget approach by Sweeney et al. (2000). These regions are mostly lo-
cated south of 75◦ S (Regions I and II in Sweeney et al., 2000). The reason why our
model may underestimate the NCP in the region may be due to the poor coverage of15

the predictors. The predictor, MLD, covers only quasi-global domain with the southern
boundary at 75◦ S. The other two predictors, Chl and PAR, have only less than 60 %
coverage in the area during the growing season. In Table 3b, we examine the Atlantic
sector. Because the in situ derived NCP are collected during the period 1998–2009, we
provide the real-time NCP from our dataset for comparison. Our values agree well with20

previously reported values. For example, both our study and previous measurements
determine relatively low NCP values near the Atlantic Polar Frontal Zone (PFZ) during
March of 2008 (middle rows) but much higher values around 40 mmolCm−2 d−1 in the
Atlantic–India sector in December of 2006 (bottom row).

Originating from upstream shallow sediments, iron carried by ocean currents can25

fuel productivity in the waters downstream, leading to phytoplankton blooms. Such
an island mass effect has been recorded near the Islands of Kerguelen, South Geor-
gia, and Crozet (Bakker et al., 2007; Jouandet et al., 2008; Jones et al., 2012). Here
we determine if our NCP data reproduce the island mass effect. Both upstream (out-
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side the bloom) and downstream (inside the bloom) values are listed in Table 3c. Our
data capture the upstream and downstream differences in all three island regions. The
downstream (inside the bloom) values, however, are smaller than those reported for
the Kerguelen Island and South Georgia, possibly due in part to area averaging over
a coarse grid in our dataset.5

4.3 Basin-scale climatology comparison

4.3.1 Model comparison

Figures. 4 and 5b show the basin-scale export rate estimates from two different mod-
els, one based on inverse modeling (GCM fitting to observation) (Schlitzer, 2002), and
the other from a satellite NPP-export model calibrated to atmospheric O2/N2 measure-10

ments (Nevison et al., 2012). Because only the January climatology is available from
Nevison et al. (2012), we include our January map in Figure 5a for comparison. We
see that the spatial patterns in these two models are in broad agreement with the cli-
matology of our data (Figs. 2a and 5a), including regions of high carbon export along
the zonal band between 40◦ S and 60◦ S, in the coastal upwelling zones off Chile and15

Namibia, as well as on the Patagonian Shelf. The main difference between the present
study (Fig. 2a) and the inverse modeling result of Schlitzer (2002) (Fig. 4) is that in the
latter, the climatology is smoother, the zonal band of high export rate is displaced more
to the south, and the high export region off the coast of Chile is more spread out. The
broader and smoother features in Schlitzer (2002) are likely due to the coarser spatial20

resolutions available at the time of the study.
The two January climatologies generally differ by less than 20 mmolCm−2 d−1

throughout the Southern Ocean, except a large discrepancy greater than
100 mmolCm−2 d−1 over the Patagonian Shelf (Fig. 5c). Closer inspection reveals
a wide range of NCP values in this region among models: 28–30 mmolCm−2 d−1 in25

our January map (Fig. 5a), 150–400 mmolCm−2 d−1 in that of Nevison et al. (2012)
(Fig. 5b), 40–140 mmolCm−2 d−1 in Westberry et al. (2012) (not shown), and 50–
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60 mmolCm−2 d−1 in Schlitzer’s annual mean (2002) (Fig. 4). High daily NCP of 70–
90 mmolCm−2 d−1 has been measured over periods of 3–4 days in this region (Schloss
et al., 2007), although it is unclear if such high values over short time periods are rep-
resentative of the monthly climatology.

The Patagonian Shelf region is known to exhibit highly variable biological activity5

owing to its uncertain relationships between phytoplankton communities and NCP
(Schloss et al., 2007), complicated bathymetry, complex ocean dynamics (Bianchi
et al., 2005; Romero et al., 2006; Rivas, 2006; Garcia et al., 2008), and multiple sources
of iron, including atmospheric dust (Erickson et al., 2003; Gassó et al., 2010; Signorini
et al., 2009; Boyd et al., 2012) and ocean upwelling, sediment resuspension, and shelf10

transport (Garcia et al., 2008; Signorini et al., 2009; Painter et al., 2010). However,
the scarcity of in situ measurements of longer timescales has hindered the progress in
establishing a reliable regional climatology and has made model validation challenging.

4.3.2 Air–sea CO2 flux

We now compare our NCP with the air–sea CO2 flux obtained from the monthly climato-15

logical maps of Takahashi et al. (2009) for the growing season. In Fig. 6a, a zonal band
of high CO2 flux is seen between 40◦ S and 60◦ S, similar to the zonal belt of CO2 flux re-
ported for the February climatology (Takahashi et al., 2012). Albeit with a much coarser
resolution (5◦ lon × 4◦ lat), the pattern of high CO2 flux is in good agreement with the
high NCP band (see Fig. 2a), outlined by the contour of NCP = 16 mmolCm−2 d−1 in20

Fig. 6a. The small CO2 flux compared with NCP could result from CO2 outgassing due
to warming during the growing season, dampening the biologically-driven CO2 uptake
(Takahashi et al., 2012).

Figure 6b shows the monthly mean of the area-integrated NCP, CO2 flux, and SST
south of 50◦ S from October to March. The NCP starts to increase steadily from25

0.6 PgCyr−1 in October until it reaches a peak around 1 PgCyr−1 in December and
January, with a quick decline in February and March. Similarly, the CO2 flux changes
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from −0.2 PgCyr−1 (out of the ocean) in October to +0.2 PgCyr−1 in December, peaks
at 0.4–0.5 PgCyr−1 in January and February, lagging the NCP peak by one month, and
declines thereafter. We see that the large difference between the CO2 flux and NCP
seems coincident with the fast increase in SST from October to January. This difference
becomes smaller as the SST increase slows down from January to March. Overall, this5

large imbalance in the early growing season is suggestive of the dominance of the
warming-induced CO2 outgassing, but further investigation is warranted.

5 Discussion and conclusions

In this study we have described the methodology and general features of a 1998–
2009 Southern Ocean NCP dataset constructed through a neural network approach.10

This effort represents the first attempt to construct such a dataset over the Southern
Ocean or any large basin entirely on the basis of observed relationships between NCP
measurements and NCP predictors. This approach is based on a self-organizing map
analysis that assumes no parametric functional form between NCP and the predictors.
Overall, we find that our constructed NCP dataset is in good agreement with previously15

published independent in situ derived NCP values of weekly or longer temporal resolu-
tion through real-time as well as climatological comparisons at different sampling sites
(Tables 2–3). One exception is the region south of 75◦ S, where the predictor coverage
is poor (Sect. 4.2).

The growing season climatology of our constructed NCP reveals a pronounced zonal20

band of high NCP that approximately follows the STF between 40◦ S and 60◦ S in the
Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the
dateline (Fig. 2a). Other regions of elevated NCP include area along the SBdy and
Antarctic coast, the complex region of Patagonian Shelf and BMC zone, as well as the
coastal upwelling zones off Chile and Namibia. This elongated zonal band resembles25

the observed air-sea CO2 flux (Fig. 6a). The CO2 flux is generally smaller than the NCP
in early growing season (Fig. 6b). This difference may result from the rapid tempera-
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ture increase in the upper ocean during this period, which reduces the CO2 solubility
and possibly results in CO2 outgassing partially countering the NCP-driven CO2 up-
take (Sect. 4.3.2). However, additional investigation into this hypothesis is necessary
in future studies.

The NCP climatological pattern is generally consistent with the expected NCP clima-5

tology based on the inverse model of Schlitzer (2002) (Fig. 4) and the carbon export
model of Nevison et al. (2012) (Fig. 5b) with significant regional variations. The largest
discrepancy appears in the Patagonian Shelf, where the estimated climatology ranges
from 30 to 400 mmolCm−2 d−1 among models (Sect. 4.3.1). Additional field campaigns
targeting NCP measurements in this region would help to reduce this uncertainty.10

The similarity in the climatological spatial distributions of NCP, POC and Chl is readily
seen but with notable differences, as evidenced by the pattern correlations of 0.33 and
0.66 between NCP vs. log10(Chl) and NCP vs. POC respectively (Fig. 2, Sect. 4.1).
The low correlation between NCP and Chl may be due to the nonlinear relationship
between Chl and phytoplankton biomass, as the Chl concentration depends on both15

phytoplankton biomass and cellular pigmentation, which adjusts to growth conditions
(Geider et al., 1996, 1997, 1998; Behrenfeld and Boss, 2003; Brown et al., 2003; Le
Bouteiller et al., 2003; Behrenfeld et al., 2005; Armstrong, 2006; Schultz, 2008; West-
berry et al., 2008; Wang et al., 2009). Another possibility is that the standard ocean-
color to Chl algorithm is not well calibrated for the Southern Ocean, as shown in recent20

studies (Mitchell and Kahru, 2009; Kahru and Mitchell, 2010; Johnson et al., 2013).
The fact that the NCP and POC climatologies bear stronger resemblance is consis-

tent with the previous findings that POC production is the largest contributor to NCP in
the Southern Ocean (Ogawa et al., 1999; Wiebinga and de Baar, 1998; Kaehler et al.,
1997; Hansell and Carlson, 1998; Sweeney et al., 2000; Schlitzer, 2002; Ishii et al.,25

2002; Allison et al., 2010). We elaborate further by multiplying POC with MLD to arrive
at a quantity we define as POC inventory (mmolCm−2), and then by comparing POC
inventory with NCP in Fig. 7a. We use the monthly, 3◦ ×3◦ bin-averaged MLD prod-
uct (2002–2009) derived from the Argo float profiles based on a temperature criterion
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(Kara et al., 2000) for this calculation (http://apdrc.soest.hawaii.edu/). We see that the
overall pattern of POC inventory is similar to the NCP distribution.

Although the NCP and POC climatologies correspond well, some spatial variations
of the POC–NCP relationship are evident. Such variations may result from true physical
differences in the POC–NCP relationships and/or to errors related to the NCP estimates5

and satellite-derived POC estimates (Gardner et al., 2003; Stramski et al., 2008). To
explore further, we show in Fig. 7b the scatter plot of NCP against POC, sorted by
latitude bands, for each of the Southern Ocean grid points. This figure demonstrates
that although there is a positive correlation between NCP and POC, the relationship
appears not to be a simple linear relationship, with variations across different latitude10

bands. For example, the relationship between POC and NCP appears to be stronger
for lower mean POC values at lower latitudes but weaker at higher latitudes poleward of
60◦ S. If this variation is not due to measurement artifacts, this plot suggests that there
may be some regions with high mean POC but relatively low NCP, and vice versa.

Another possibility, however, is that there may be errors in the ship track NCP es-15

timates in some regions characterized by strong vertical mixing of O2-undersaturated
waters to the surface, as pointed out by Reuer et al. (2007). Although we excluded
all negative NCP estimates from the SOM analysis, which correspond to regions of
upwelled, O2-undersaturated water, it is possible that this vertical mixing effect still
remains in some non-excluded, positive estimates of NCP if the biological productiv-20

ity of O2 is strong enough. When this effect occurs, some of the low NCP/high POC
regions may have a negative bias from O2-undersaturated upwelled water. Future in-
vestigations into these particular regions are needed to determine to what degree this
anomalous low NCP/high POC behavior represents a physical process, a bias, or some
combination of the two.25

Strong correspondence between POC and NCP in the Southern Ocean on longer
timescales suggests that as satellite POC observation becomes available for a longer
time period, it can provide a direct view of carbon export variability with a reasonable
amount of uncertainty. However, on shorter timescales, the correspondence between
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NCP and POC is weaker, as evidenced by the correlation of 0.20 in the daily ship track
data (Sect. 4.1) and pattern correlations of less than 0.5 in the monthly snapshots
(Supplement). In addition, a major obstacle in monitoring POC variability from satellite
is cloud cover, as the Southern Hemisphere belt (between 30◦ S and 65◦ S) is among
the cloudiest regions on the planet (Haynes et al., 2011). Therefore, evaluation of NCP5

variability across a range of timescales requires consideration of the relationships be-
tween NCP and multiple variables, as in the present dataset.

Although these results suggest promise in providing insight into Southern Ocean
NCP mean state and variability, substantial uncertainty in the NCP construction
remains. On weekly timescales, uncertainty due to NCP variance unexplained by10

the predictors likely dominates, as we estimated a MAE and RMSE of 6.76 and
11.4 mmolCm−2 d−1, respectively, based on the ship track data. For longer time av-
erages, i.e. seasonal to decadal, errors in NCP measurements and limitations in ship
track coverage likely dominate the uncertainty. As discussed above, efforts to remove
possible biases related to the vertical mixing of O2-undersaturated water would reduce15

NCP measurement errors.
Regarding the latter source of uncertainty, additional field campaigns to measure

Southern Ocean NCP, particularly in several data sparse regions, possibly would lead
to improved NCP constructions. Through a bootstrap approach to constructing several
overlapping NCP datasets, we have quantified the variance in NCP climatology owing20

to the limitations of ship track coverage. This analysis has identified several regions
where bootstrap climatology variance is high but the number of NCP observations is
low or zero (see Fig. 3). This finding suggests that targeted measurements in these
particular regions may help to constrain the relationships between NCP and each of
the predictors, thus resulting in reduced uncertainty in the Southern Ocean NCP cli-25

matology and variability.
Notwithstanding these limitations, the dataset we present provides a new opportunity

to investigate large-scale variability of NCP and its connections to the Southern Ocean
carbon cycle in ways previously not possible in an observation-based dataset. A recent

16946

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16923/2013/bgd-10-16923-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16923/2013/bgd-10-16923-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16923–16972, 2013

Neural
network-based

estimates of
Southern Ocean NCP

C.-H. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

study suggests that a global algorithm for determining NCP may not capture regional
NCP differences effectively (Li and Cassar, 2013). The variable relationships between
ocean color, Chl concentration, and depth-integrated productivity in different ocean
regions (Campbell et al., 2002; Emerson et al., 2008) have challenged the NPP models,
with particular difficulty, for example, in regions of extreme Chl (Carr et al., 2006) and5

coastal waters (Saba et al., 2011). Our data-driven approach may provide guidance to
help correct for biases in the NPP models. Our constructed dataset also may offer the
opportunity to investigate interannual NCP variability, even if only for a period of a little
more than a decade (see supporting material for a preliminary example). As more NCP
measurements and validation data become available, this dataset shall be continually10

refined, with the hope that applications expand as errors are reduced.

Supplementary material related to this article is available online at
http://www.biogeosciences-discuss.net/10/16923/2013/
bgd-10-16923-2013-supplement.pdf.
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SSH climatology (http://apdrc.soest.hawaii.edu/datadoc/mdot.php), and production of ARGO
MLD data (http://apdrc.soest.hawaii.edu/dods/public_data/Argo_Products); Japan Agency for
Marine-Earth Science and Technology (JAMSTEC) for providing the OFES MLD data (http:
//www.jamstec.go.jp/esc/ofes/eng/); and Lamont-Doherty Earth Observatory (LDEO) for pro-
viding the air–sea CO2 flux (http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/). The5

SOM constructed NCP from 1998–2009 reported in this study will be available at http://etta.
renci.duke.edu/moncp/c/moncp.html.
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Table 1. Availability percentage of predictor variables in the ship track and weekly gridded data
used to generate NCP maps.

Ship track Weekly gridded
Variable availability (%) map availability (%)

SST 99.5 97.0
Chl 57.4 59.9
POC 43.3 40.4
PAR 75.8 45.9
MLD 98.5 83.7
SSH 82.4 78.9
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Table 2. Comparison of area-integrated NCP for the Southern Ocean south of 50◦ S.

Reference Method Period NCP (mmolCm−2 d−1)

Previous this study
studies (95 % CI)a

Moore et al. (2013) NCAR CMIP5 coupled 1990s 12–15
carbon-climate simulation

Westberry et al. (2012) Carbon-based NPP model and 2004 8.3
empirical relationships of in vitro PvRb

Nevison et al. (2012) VGPM NPP and export model 1998–2007 12–24 14 (12–21)
Dunne et al. (2007) POC export from empirical equation 1998–2004 11–14 1998–2009

based on in situ observation
Pollard et al. (2006) Nutrient drawdown based on long-term 17–22

Ekman flux divergence
Schlitzer (2002) 3-D inverse model steady-state 15–20

a 95 % bootstrap confidence interval.
b PvR: photosynthesis vs. respiration.
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Table 3a. Climatological comparison of independent in situ NCP measurements and the con-
structed NCP.

Reference Method Location Time NCP (mmolCm−2 d−1)

Previous This study
study Climatology (σ)a (95 %)b

Indian sector
Minas and Minas Mass balance based (65◦ E, 40–62◦ S) Aug/Sep–Feb/Mar 17 17 (±14) (13–23)c

(1992) on nutrient drawdown 1976–1977

Ishii et al. (1998) Seasonal ∆DIC (30–40◦ E, 67–68.2◦ S) 14–17 Feb 1993 14–19 12 (±7.4) (8.5–20)
(temporal difference) (47.5–48.8◦ E, 66–66.5◦ S) 19 Feb 1993 22–29 11 (±6.8) (7.9–22)

(49.1–67.8◦ E, 65–65.7◦ S) 26–28 Feb 1993 13–17 8.7 (±8.5) (6.7–18)
(70.6–77.5◦ E, 67–69◦ S) 28 Feb–1 Mar 1993 24–32 16 (±5.1) (12–25)

Indian and Pacific sectors
(80–150◦ E, 63–65◦ S) 4–13 Mar 1993 20–27 16 (±4.7) (6–22)

Rubin et al. (1998) Seasonal ∆DIC (110–171◦ E, 67–70◦ S) Winter–late Feb/ 6.5–24 15 (±11) (12–19)c

(vertical gradient) mid Mar 1992, 1994

Ishii et al. (2002) Seasonal ∆DIC (140◦ E, 64–65.5◦ S) 19 Dec 1994– 2.5–28 18 (±11) (11–22)
(temporal difference) 21 Jan 1995

Ross Sea
Sweeny et al. (2000) Seasonal ∆DIC (163–186◦ E, 74–78◦ S) Mid Oct 1996– 22–64 19 (±9.7) (14–25)

(vertical gradient) Mid Feb 1997

a Seasonal standard deviation.
b 95 % bootstrap confidence interval.
c November–March mean.
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Table 3b. Real-time comparison of independent in situ NCP measurements and the con-
structed NCP.

Reference Method Location Time NCP (mmolCm−2 d−1)

Previous This study
studies (95 %)a

Scotia Sea
Shim et al. nutrient drawdown (52◦ W, 57–60◦ S) 20 Nov– 24–29 25 (15–33)
(2006) 31 Dec 2001

Atlantic sector
Hamme et al. O2/Ar (37–38◦ W, 50–51◦ S) 2–9 Mar 2008 11–22 15 (2.6–23)
(2012) 9–14 Mar 2008 5–13.8 6.6 (1.7–25)

Moore et al. Mass balance based (37–38◦ W, 50–51◦ S) 9–14 Mar 2008 3.2–6.7 6.6 (1.7–25)
(2011) on ∆DIC and O2

Atlantic-Indian sector
Boutin and Based on mixed layer (16.4–21.2◦ E, 46.8–47.8◦ S) 28 Nov– 30–51 40 (15–50)
Merlivat (2009) budget on diurnal time scale 30 Dec 2006

a 95 % bootstrap confidence interval.
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Table 3c. Real-time comparison of island mass effect.

Reference Method Location Time NCP (mmolCm−2 d−1)

Previous This study
study (95 %)a

Kerguelen
Jouandet et al. seasonal ∆DIC Nov 2004– Inside bloom 49–98 30 (15–40)
(2008) (vertical gradient) Feb 2005 (72◦ E, 50.5◦ S) 17–26 22 (15–34)

Outside bloom
(78◦ E, 52◦ S)

South Georgia
Jones et al. seasonal ∆DIC Nov 2007– Bloom 43 29 (17–31)
(2012) (vertical gradient) Feb 2008 (39–40◦ W. 52◦ S) 12 17 (14–26)

HNLC
(42◦ W, 56–57◦ S)

Crozet
Bakker et al. ∆DIC in the 8 Nov 2004– Bloom 33–45 31 (18–37)
(2007) upper 100 m 16 Jan 2005 (47–52◦ E, 43–45.5◦ S) 16–19 18 (13–27)

HNLC
(47.8–49◦ E, 51.5–52.9◦ S)

a 95 % bootstrap confidence interval.
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(a) 

(b) 

(mmol O2 m-2 d-1) 

Fig. 1. (a) The ship tracks of the in situ NCP measurements used in this study. The time of the
research cruises is color-coded in months. (b) The histogram of the ship track NCP distribution.
The red dashed line marks NCP = 250 mmolO2 m−2 d−1.
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PF 
SBDY 

STF 

SAF 

(a) 

PF 
SBDY 

STF 

SAF 

(b) 

PF 
SBDY 

STF 

SAF 

(c) 

Fig. 2. Growing season (November–March) climatologies (in color) of (a) NCP (mmolCm−2 d−1)
for 1998–2009, (b) POC (mmolCm−3) for 2002–2009, and (c) log10 Chl (mgm−3) for 1998–
2007. The major Southern Ocean fronts (Orsi et al., 1995) are superimposed (from the north):
the Subtropical Front (STF), the Subantarctic Front (SAF), the Polar Front (PF), and the South-
ern Boundary (SBdy).
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Fig. 3. Standard deviation of the growing season mean NCP from the 100 bootstrap NCP
datasets (σboot) (mmolCm−2 d−1, in color) superimposed with the locations of each ship track
(black lines).
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Fig. 4. Long-term mean annual POC export of Schlitzer (2002) (mmolCm−2 d−1).

16969

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16923/2013/bgd-10-16923-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16923/2013/bgd-10-16923-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16923–16972, 2013

Neural
network-based

estimates of
Southern Ocean NCP

C.-H. Chang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) 

(b) 

(c) 

Fig. 5. January NCP climatologies: (a) our constructed NCP (1998–2009); (b) Nevison et al.
(2012) (1998–2007); (c) difference between two climatologies (b–a). (Unit: mmolCm−2 d−1.)
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(a) 

Fig. 6. Comparison with air–sea CO2 flux (+: into the ocean). (a) November–March climatology
of air–sea CO2 flux (Takahashi et al., 2009) (mmolCm−2 d−1, in color) superimposed with the
contour of NCP = 16 mmolCm−2 d−1. (b) Evolution of monthly mean area-integrated (> 50◦ S)
NCP (red), CO2 flux (blue), and SST (green) from October to March. The left y axis corresponds
with the NCP and CO2 (Pgyr−1) and the right y axis corresponds with SST (◦C).
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Fig. 7. (a) November–March climatology of POC inventory, defined as POC×MLD (mmolCm−2,
in color), superimposed with the contour of NCP = 16 mmolCm−2 d−1. (b) The scatter plot of
NCP (mmolCm−2 d−1, y axis) against POC (mmolCm−3 , x axis), sorted by latitudinal bands
(color).
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